

IT WORKS

RFID-M1

API

Programmer Guide

Revision 2.00

 * All rights reserved

** Subjects changed without notice

Information furnished by IT WORKS, Ltd. is believed to be accurate and reliable. However, no responsibility is
assumed by IT WORKS, Ltd. for its use; nor for any infringement of patents or other rights of third parties which may
result from its use.

http://www.itworks.co.th email: biosupport@itworksolutions.com

RFID-M1 – API Programmer Guide

2

Table of Contents

1 API FUNCTIONS 4

1.1 Configuration, I/O commands 4
1.1.1 Int GetVersion API(char *VersionAPI) 4
1.1.2 int ActiveLED (int DeviceAddress, unsigned char NumLED, unsigned char ontime, ussigned char

cycle) 4
1.1.3 int SetLED (int DeviceAddress, unsigned char LEDState) 4
1.1.4 int ActiveBuzzer (int DeviceAddress, unsigned char mode, unsigned char *pattern) 5
1.1.5 int RF_Field (int DeviceAddress, unsigned char time) 6

1.2 ISO14443-A Command 7
1.2.1 int MF_Request (int DeviceAddress, unsigned char mode, unsigned char *ATQ) 7
1.2.2 int MF_Anticoll (int DeviceAddress, unsigned char *UID, unsigned char &Collision) 7
int MF_Anticoll2 (int DeviceAddress, unsigned char *UID, unsigned char &Collision) 7
int MF_Anticoll3 (int DeviceAddress, unsigned char *UID, unsigned char &Collision) 8
1.2.3 int MF_Select(int Device Address, unsigned char *UID) 8
int MF_Select2(int Device Address, unsigned char *UID) 8
int MF_Select3(int Device Address, unsigned char *UID) 9
1.2.4 int MF_Halt(int Device Address, unsigned char mode) 9
1.2.5 int SLE_Generic(int DeviceAddress,unsigned char CRC_Flag,unsigned char &length,unsigned

char *buffer) 10

1.3 Mifare® function 11
1.3.1 int MF_Auth(int DeviceAddress, unsigned char KeyAB, unsigned char *snr, unsigned char

add_blk) 11
1.3.2 int MF_Read (int DeviceAddress,unsigned char add_blk, unsigned char num_blk, unsigned char

*buffer); 11
1.3.3 int MF_Write(int DeviceAddress,unsigned char add_blk, unsigned char num_blk, unsigned char

*buffer) 11
1.3.4 int MF_Transfer(int DeviceAddress, unsigned char add_blk) 12
1.3.5 int MF_Incremnet(int DeviceAddress, unsigned char add_blk, int value) 12
1.3.6 int MF_Decrement(int DeviceAddress, unsigned char add_blk, int value) 12
1.3.7 int MF_Restore(int DeviceAddress, unsigned char add_blk) 13
1.3.8 int MF_InitValue(int DeviceAddress, unsigned char add_blk, int value) 13
1.3.9 int MF_ReadValue(int DeviceAddress, unsigned char add_blk, int *value)13
1.3.10 int MF_LoadKey(int DeviceAddress, unsigned char *Key) 13
1.3.11 int MF_StoreKeyToEE(int DeviceAddress, unsigned char KeyAB, unsigned char Sector, unsigned

char *Key) 14
1.3.12 int MF_LoadKeyFromEF(int DeviceAddress, unsigned char KeyAB, unsigned char Sector)

 14

1.4 Mifare® High Level Functions 15
1.4.1 int MF_HLRead (int DeviceAddress, unsigned char mode, unsigned char add_blk, unsigned char

num_blk, unsigned char *snr, unsigned char *buffer); 15
1.4.2 int MF_HLWrite (int DeviceAddress, unsigned char mode, unsigned char add_blk, unsigned char

num_blk, unsigned char *snr, unsigned char *buffer); 15
1.4.3 int MF_HLInitVal (int DeviceAddress, unsigned char mode, unsigned char sect_num, unsigned

char *snr, int value); 16
1.4.4 int MF_HLInc (int DeviceAddress, unsigned char mode, unsigned char sect_num, unsigned char

*snr, int *value) 16
1.4.5 int MF_HLDec (int DeviceAddress, unsigned char mode, unsigned char sect_num, unsigned char

*snr, int *value) 17
1.4.6 int MF_StoreKeyToEE(int DeviceAddress, unsigned char KeyAB, unsigned char Sector, unsigned

char *Key) 17

RFID-M1 – API Programmer Guide

3

1.4.7 int MF_HLRequest (int DeviceAddress, unsigned char mode, int &length, unsigned char *UID)
 18

1.5 Misc. Commands 19
1.5.1 int SetFirmwareBaudrate(int DeviceAddress, unsigned char Baudrate) 19
1.5.2 int SetDeviceAddress (int DeviceAddress, unsigned char &newAddress 19
1.5.3 int GetVersionlNum (int DeviceAddress, char *VersionNUM) 20
1.5.4 int GetSerialNum (int DeviceAddress, int &CurrentAddress, char *SerialNUM) 20
1.5.5 int GetUserInfo (int DeviceAddress, char *UserInfo) 20
1.5.6 int SetUserInfo (int DeviceAddress, char *UserInfo) 21
1.5.7 int SetWiegandStatus(int DeviceAddress,unsigned char status) 21
1.5.8 int ActiveWiegandMode(int DeviceAddress,unsigned char status) 21
1.5.9 int ReadChar(unsigned char *byte) 22

1.6 Huahong SHC1102 command set 22
1.6.1 int SHC1102_Auth(int DeviceAddress,unsigned char *key); 22
1.6.2 int SHC1102_Read(int DeviceAddress,unsigned char block, unsigned char *dat) 22
1.6.3 int SHC1102_Write(int DeviceAddress,unsigned char block, unsigned char *dat) 23
1.6.4 int SHC1102_Halt(int DeviceAddress) 23

2 ADDITIONAL INFORMATION 24

2.1 Error/Status Code 24

RFID-M1 – API Programmer Guide

4

1 API Functions

1.1 Configuration, I/O commands

1.1.1 Int GetVersion API(char *VersionAPI)

Parameter Description

VersionAPI Character pointer to C string which return the Version Number of the API

Return 0x00 – Successful

Description

 Get the Version Nmber of the API

1.1.2 int ActiveLED (int DeviceAddress, unsigned char NumLED, unsigned char ontime, ussigned char cycle)

Parameter Description

DeviceAddress Device Address of the reader

NumLED The LED to be selected

0x01 - Red LED

0x02- Green LED

0x03 – Both Red & Green LED

on-time Units of the LED turn-on time (duty cycle). Each unit is 100ms

cycle Number of cycles that the LED will be turned on and off.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

The LED is blinking for the number of cycles. Each cycle is one second. The turn-on time of the LED in each cycle is
set by the “on-time”.

Example

The Green LED will be toggled (turn on and off) for three times. Each time the LED will be turned on for 400ms.

DeviceAddress=0x00;

unsigned char NumLED = 0x02; //Select Green LED

unsigned char ontime = 4; //LED on time =400ms

unsigned char cycle = 3; //on-off 3 times (3 second)

if(!ToggleLED(DeviceAddress, NumLED, ontime, cycle))

{ //successful }

1.1.3 int SetLED (int DeviceAddress, unsigned char LEDState)

Parameter Description

DeviceAddress Device Address of the reader

LEDState Turn on/off the LEDs.

Bit0 - Red LED. 0= LED on, 1= LED off.

RFID-M1 – API Programmer Guide

5

Bit1 - Green LED. 0= LED on, 1= LED off.

Bit2-7 - unused

 Return 0x00 – Successful

(Refer the API return code for other values)

Description

Turn on/off the selected LEDs

1.1.4 int ActiveBuzzer (int DeviceAddress, unsigned char mode, unsigned char *pattern)

Parameter Description

DeviceAddress Device Address of the reader

mode buzzer mode

0 – Turn off the buzzer

 1 – Turn on the buzzer.

4 – Play a sound pattern. The pattern is a sequence of on-off-on-off sound controlled by the
parameter array “pattern”.

pattern Pointer to a parameter array which controls the sound pattern.

pattern[0]: Units of first on time. Each unit is 100ms.

pattern[1]: Units of first off time.

pattern[2]: Units of second on time.

pattern[3]: Units of second off time.

pattern[4]: Cycle

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Control the buzzer. You can control the buzzer to play a sound pattern by using mode 4.

Example

A sound pattern (on 0.5sec – off 0.3sec – on 1sec –off 0.6sec) will be played for 7 times.

DeviceAddress=0x00;

pattern[0] = 5;

pattern[1] = 3;

pattern[2] = 10;

pattern[3] = 6;

pattern[4] = 7;

if (!BuzzerControl(DeviceAddress, 0x04, pattern))

{ //successful }

else

{ //Not successful }

RFID-M1 – API Programmer Guide

6

1.1.5 int RF_Field (int DeviceAddress, unsigned char time)

Parameter Description

DeviceAddress Device Address of the reader

time Units of time to turn off the RF filed. Each unit is 100us.

 Return 0x00 – Successful

(Refer the API return code for other values)

Description

Turn off the RF field for the units of time after that the RF will be on again. The value 0x00 will turn off the field
forever until a new RF_Field() command is issued.

RFID-M1 – API Programmer Guide

7

1.2 ISO14443-A Command

1.2.1 int MF_Request (int DeviceAddress, unsigned char mode, unsigned char *ATQ)

Parameter Description

DeviceAddress Device Address of the reader

Mode 0x00 – request all (wake up all)

0x01 – request idle

ATQ two bytes of ATQ returned from the contactless card.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Send the ISO14443 A REQUEST command to the card. The two-byte ATQ string will be returned.

Example

A REQUEST-ALL command will be sent to the card. The ATQ (0x0004) of the card will be returned if the request
command is successful.

DeviceAddress=0x00;

unsigned char ATQ[2];

if (!Request(DeviceAddress, 0x00, ATQ))

{ //successful ATQ[0]= 0x04; ATQ[1] = 0x00 }

else

{ //Not successful }

NOTE: The ATQ for the MIFARE®1 card is 0x0004, other value may be return from cards other then MIFARE®1.

1.2.2 int MF_Anticoll (int DeviceAddress, unsigned char *UID, unsigned char &Collision)

Parameter Description

DeviceAddress Device Address of the reader

UID Pointer to four bytes buffer for the UID (card serial number) returned by the anticollision loop.

Collision Collision Flag.

 0x00 – No collision detected.

0x01 – Collision detected. (More then one waked-up card detected in the field

Return 0x00 – Successful

 0x46 – Successful

(Refer the API return code for other values)

Description

Enable the ISO14443A anti-collision loop of cascade level1, the card’s UID of cascade level1 will be returned. The
Collision flag indicates that a collision is happened. (There are more than one card in the Halt mode within the field)

int MF_Anticoll2 (int DeviceAddress, unsigned char *UID, unsigned char &Collision)

RFID-M1 – API Programmer Guide

8

Parameter Description

DeviceAddress Device Address of the reader

UID Pointer to four bytes buffer for the UID (card serial number) returned by the anticollision loop.

Collision Collision Flag.

 0x00 – No collision detected.

0x01 – Collision detected. (More then one waked-up card detected in the field

Return 0x00 – Successful

 (Refer the API return code for other values)

Description

Enable the ISO14443A anti-collision loop of cascade level2, the card’s UID of cascade level2 will be returned. The
Collision flag indicates that a collision is happened. (There are more than one card in the Halt mode within the field)

int MF_Anticoll3 (int DeviceAddress, unsigned char *UID, unsigned char &Collision)

Parameter Description

DeviceAddress Device Address of the reader

UID Pointer to four bytes buffer for the UID (card serial number) returned by the anticollision loop.

Collision Collision Flag.

 0x00 – No collision detected.

0x01 – Collision detected. (More then one waked-up card detected in the field

Return 0x00 – Successful

 (Refer the API return code for other values)

Description

Enable the ISO14443A anti-collision loop of cascade level3, the card’s UID of cascade level3 will be returned. The
Collision flag indicates that a collision is happened. (There are more than one card in the Halt mode within the field)

1.2.3 int MF_Select(int Device Address, unsigned char *UID)

Parameter Description

DeviceAddress Device Address of the reader

UID Pointer to a four-byte buffer storing the UID (card serial number) of the card to be selected.

Return 0x00 – Successful

 0x46 – Successful, need next anticollision

(Refer the API return code for other values)

Description

ISO14443A SELECT command of Cascadelevel1. The requested card with the specified UID of Cascadelevel1 will
be (open) for further card commands.

int MF_Select2(int Device Address, unsigned char *UID)

RFID-M1 – API Programmer Guide

9

Parameter Description

DeviceAddress Device Address of the reader

UID Pointer to a four-byte buffer storing the UID (card serial number) of the card to be selected.

Return 0x00 – Successful

 0x46 – Successful, need next anticollision

(Refer the API return code for other values)

Description

ISO14443A SELECT command of Cascadelevel2. The requested card with the specified UID of Cascadelevel2 will
be (open) for further card commands.

int MF_Select3(int Device Address, unsigned char *UID)

Parameter Description

DeviceAddress Device Address of the reader

UID Pointer to a four-byte buffer storing the UID (card serial number) of the card to be selected.

Return 0x00 – Successful

 (Refer the API return code for other values)

Description

ISO14443A SELECT command of Cascadelevel3. The requested card with the specified UID of Cascadelevel3 will
be (open) for further card commands.

Example

Select the card. The serial number of the card is 0xF05320D1.

DeviceAddress=0x00;

unsigned char UID[4];

UID[0] = 0xD1;

UID[1] = 0x20;

UID[2] = 0x53;

UID[3] = 0xF0;

if (!Select(DeviceAddress, UID))

{ //successful }

else

{ //Not successful }

1.2.4 int MF_Halt(int Device Address, unsigned char mode)

Parameter Description

DeviceAddress Device Address of the reader

Mode Enable CRC/MAC as checksum

RFID-M1 – API Programmer Guide

10

0x00 – Standard ISO14443-A Halt command. Use the 16 bit CRC as checksum.

0x01 – Special mode for the SLE55Rxx. The four-byte MAC is used to replace the CRC
checksum. This special mode is used to halt a SLE55Rxx card which is under protected
mode.

 Return 0x00 – Successful

(Refer the API return code for other values)

Description

ISO14443A Halt command. The MAC mode is a special mode for the SLE55Rxx card. The SLE55Rxx card enters
protected mode after a successful AUTHENTICATION and uses the four-byte MAC to replace the 16-bit CRC
checksum. Under the protected mode, you need to use the MAC mode to halt the SLE55Rxx cards. For normal
MIFARE® card mode 0x00 should be used for the normal CRC checksum.

1.2.5 int SLE_Generic(int DeviceAddress,unsigned char CRC_Flag,unsigned char &length,unsigned char *buffer)

Parameter Description

DeviceAddress Device Address of the reader

CRC_Flag Enable Flag.

 0x00 – No CRC checksum will be calculated and appended.

 0x01 – The CRC checksum will be calculated and appended.

 Length the byte number of buffer

 Buffer APDU to/form card

 Return 0x00 – Successful

(Refer the API return code for other values)

Description

ISO14443A general command. Used to Access ISO14443A CPU Card, e.g. Pro(X), DesFire.

RFID-M1 – API Programmer Guide

11

1.3 Mifare® function

1.3.1 int MF_Auth(int DeviceAddress, unsigned char KeyAB, unsigned char *snr, unsigned char add_blk)

Parameter Description

DeviceAddress Device Address of the reader

KeyAB Key A or B selection

 0x60: Use KEYA for authentication

 0x61: Use KEYB for authentication

snr Pointer to a four-bytes buffer which stores the UID(card serial number) of the card to be
authenticated.

add_blk The address of the block (block number : 00..63) to be authenticated.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

This command is used to authenticate the selected Mifare® card. Further read/write and value related operations are
allowed only after the successful authentication.

1.3.2 int MF_Read (int DeviceAddress,unsigned char add_blk, unsigned char num_blk, unsigned char *buffer);

Parameter Description

DeviceAddress Device Address of the reader

Add_blk Start address of memory blocks to read

num_blk Number(1 –4) of block to read.

Buffer Pointer to the buffer which returns the data read from the card. The length of the buffer equals to
num_blk *16 bytes.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Read multiple (up to four) blocks from the Mifare® card.

Note: The blocks to be read must be in the same sector.

1.3.3 int MF_Write(int DeviceAddress,unsigned char add_blk, unsigned char num_blk, unsigned char *buffer)

Parameter Description

DeviceAddress Device Address of the reader

Add_blk Start address of memory blocks to write

num_blk Number(1 –4) of block to write.

Buffer Pointer to the buffer which stores the data to be written to the card. The length of the buffer equals
to num_blk *16 bytes.

Return 0x00 – Successful

RFID-M1 – API Programmer Guide

12

(Refer the API return code for other values)

Description

Write multiple (up to four) blocks data to the Mifare® card.

Note: The blocks to be written must be in the same sector. Writing data to the sector trailer (block address = N*4+3,
where N is the sector number) should be handled carefully; otherwise you may corrupt the KEY area and lock the
sector.

1.3.4 int MF_Transfer(int DeviceAddress, unsigned char add_blk)

Parameter Description

DeviceAddress Device Address of the reader

Add_blk Block address of the value block.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Transfer a value amount from the Mifare® Reader Chip’s internal value buffer register to the selected value block.

1.3.5 int MF_Incremnet(int DeviceAddress, unsigned char add_blk, int value)

Parameter Description

DeviceAddress Device Address of the reader

Add_blk Block address of the value block.

Value the value to be increased

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Increase the value of a MIFARE® Value Block. The value block must be pre-initialized according to the MIFARE®
Value Block Format.

Note: The VALUE is in plain format, the user is no need to take care the MIFARE® value block format.

Note: The result of the MIFARE®’s Decrement or Increment operation is stored within the on-chip buffer register.
The value in the selected value block will not be updated until the Transfer command is done.

1.3.6 int MF_Decrement(int DeviceAddress, unsigned char add_blk, int value)

Parameter Description

DeviceAddress Device Address of the reader

Add_blk Block address of the value block.

Value the value to be decreased

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Decrease the value of a MIFARE® Value Block. The value block must be initialized according to the MIFARE®
Value Block Format.

RFID-M1 – API Programmer Guide

13

Note: The VALUE is in plain format, the user is no need to take care the MIFARE® value block format.

1.3.7 int MF_Restore(int DeviceAddress, unsigned char add_blk)

Parameter Description

DeviceAddress Device Address of the reader

Add_blk Block address of the value block.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Restore the content of the selected Value Block to the MIFARE® Reader Chip’s internal value buffer register.

1.3.8 int MF_InitValue(int DeviceAddress, unsigned char add_blk, int value)

Parameter Description

DeviceAddress Device Address of the reader

Add_blk Block address of the value block.

Value the value to be written. (Initialize the value block)

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Write (initialize) a value to a MIAFARE value block. The block to be written will be automatically formatted with the
MIFARE® Value Block Format.

1.3.9 int MF_ReadValue(int DeviceAddress, unsigned char add_blk, int *value)

Parameter Description

DeviceAddress Device Address of the reader.

Add_blk Block address of the value block.

Value the value read back from the value block.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Read back the value amount of a MIFARE® Value Block.

1.3.10 int MF_LoadKey(int DeviceAddress, unsigned char *Key)

Parameter Description

DeviceAddress Device Address of the reader

Key Pointer to a 6-bytes buffer storing the key string.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

RFID-M1 – API Programmer Guide

14

Directly load the key to the Master Key Buffer. A Master Key must be loaded to the Master Key Buffer (by
MF_LoadKey () or MF_LoadKeyFromEeprom()) before executing the Authentication command.

1.3.11 int MF_StoreKeyToEE(int DeviceAddress, unsigned char KeyAB, unsigned char Sector, unsigned char *Key)

Parameter Description

DeviceAddress Device Address of the reader

KeyAB Select KEYA or KEYB.

 0x60: the Key will be stored as KEYA.

 0x61: the Key will be stored as KEYB.

Sector The sector number {0x00-0x0F}: where the key to be stored..

Key Pointer to a 6-bytes buffer storing the uncoded key.string. (i.e. A0A1A2A3A4A5)

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Stores a key to the reader’s EEPROM.

1.3.12 int MF_LoadKeyFromEF(int DeviceAddress, unsigned char KeyAB, unsigned char Sector)

Parameter Description

DeviceAddress Device Address of the reader

KeyAB Select KEYA or KEYB.

 0x60: KEYA will be loaded from the EEProm.

 0x61: KEYB will be loaded from the EEProm.

Sector The sector number {0x00-0x0F} of the key to be loaded..

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Load key to the Master Key Buffer from the MFRC500 chip’s internal EEPROM. This function has the same
function as the MF_LoadKey(), but the key is loaded from the internal EEPROM instead providing the 6-byte un-
coded key string

RFID-M1 – API Programmer Guide

15

1.4 Mifare® High Level Functions

The High Level command integrated the low level commands – Request, Anti-Collision – Select – LoadKey –
Authentication – Read/Write/Increment/Decrement to a single one-step operation.

1.4.1 int MF_HLRead (int DeviceAddress, unsigned char mode, unsigned char add_blk, unsigned char num_blk,
unsigned char *snr, unsigned char *buffer);

Parameter Description

DeviceAddress Device Address of the reader

mode Operating Mode

 Bit0 – All – Select Request all or Request IDLE mode (0/1= IDLE/ALL)

 Bit1 – SNR – Enable the Card Serial Number comparison features. The further operating will be
processed only if the detected card number matches the card serial number sent by the Host.

 Bit2 – KeyB – Authenticate with KeyA or Key B. 0/1= KeyA/KeyB

Add_blk Start address of memory blocks to read

num_blk Number(1 –4) of block to read

snr The serial number, which will be ignored if the SNR bit is not set, of the card to be selected.

 The serial number of the card selected will be return by the snr after the function is called
successfully.

buffer Pointer to the buffer which returns the data read from the card. The length of the buffer equals to
num_blk *16 bytes.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Read multiple (up to four) blocks from the Mifare® card.

Note : The blocks to be read must be in the same sector.

1.4.2 int MF_HLWrite (int DeviceAddress, unsigned char mode, unsigned char add_blk, unsigned char num_blk,
unsigned char *snr, unsigned char *buffer);

Parameter Description

mode Operating Mode

 Bit0 – All – Select Request all or Request IDLE mode (0/1= IDLE/ALL)

 Bit1 – SNR – Enable the Card Serial Number comparison features. The further operating will be
processed only if the detected card number matches the card serial number sent by the Host.

 Bit2 – KeyB – Authenticate with KeyA or Key B. 0/1= KeyA/KeyB

Add_blk Starting block address of memory blocks to be written

num_blk Number(1 –4) of block to write

snr The serial number, which will be ignored if the SNR bit is not set, of the card to be selected.

 The serial number of the card selected will be return by the snr after the function is called
successfully.

buffer Pointer to the buffer which stores the data to be written to the card. The length of the buffer equals
to num_blk *16 bytes.

Return 0x00 – Successful

RFID-M1 – API Programmer Guide

16

(Refer the API return code for other values)

Description

Write multiple (up to four) blocks data to the Mifare® card.

Note: The blocks to be written must be in the same sector. Writing data to the sector trailer (block address = N*4+3,
where N is the sector number) should be handled carefully, otherwise you may corrupt the KEY area and lock the
sector.

1.4.3 int MF_HLInitVal (int DeviceAddress, unsigned char mode, unsigned char sect_num, unsigned char *snr,
int value);1

Parameter Description

mode Operating Mode

 Bit0 – All – Select Request all or Request IDLE mode (0/1= IDLE/ALL)

 Bit1 – SNR – Enable the Card Serial Number comparison features. The further operating will be
processed only if the detected card number matches the card serial number sent by the Host.

 Bit2 – KeyB – Authenticate with KeyA or Key B. 0/1= KeyA/KeyB

sec_num The number of the sector to be formatted as value block.

snr The serial number, which will be ignored if the SNR bit is not set, of the card to be selected.

 The serial number of the card selected will be return by the snr after the function is called
successfully.

value The initial value to be written to the value blocks.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Initials the value block (Block 1) and the back-up block (Block 2) to the MIFARE® VALUE BLOCK format with the
initial value.

1.4.4 int MF_HLInc (int DeviceAddress, unsigned char mode, unsigned char sect_num, unsigned char *snr, int
*value)

Parameter Description

mode Operating Mode

 Bit0 – All – Select Request all or Request IDLE mode (0/1= IDLE/ALL)

 Bit1 – SNR – Enable the Card Serial Number comparison features. The further operating will be
processed only if the detected card number matches the card serial number sent by the Host.

 Bit2 – KeyB – Authenticate with KeyA or Key B. 0/1= KeyA/KeyB

sec_num The number of the sector to be formatted as value block.

snr The serial number, which will be ignored if the SNR bit is not set, of the card to be selected.

1 For the functions MF_HLInitVal, MF_HLInc and MF_HLDec (High Level Value related commands), the

second block (Block 1) is used as the Value Block of the selected sector. The third block (Block 2) is used as the backup of
the value block and the first block (Block0) is free for use.

RFID-M1 – API Programmer Guide

17

 The serial number of the card selected will be return by the snr after the function is called
successfully.

value The value to be increment.

 The content of the value block will be returned after the increment is done.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Increase the value of a MIFARE® Value Block and also copy the value block to the backup block.

1.4.5 int MF_HLDec (int DeviceAddress, unsigned char mode, unsigned char sect_num, unsigned char *snr, int
*value)

Parameter Description

Mode Operating Mode

 Bit0 – All – Select Request all or Request IDLE mode (0/1= IDLE/ALL)

 Bit1 – SNR – Enable the Card Serial Number comparison feature. The further operating will be
processed only if the detected card number matches the card serial number sent by the Host.

 Bit2 – KeyB – Authenticate with KeyA or Key B. 0/1= KeyA/KeyB

sec_num The number of the sector to be formatted as value block.

snr The serial number, which will be ignored if the SNR bit is not set, of the card to be selected.

 The serial number of the card selected will be return by the snr after the function is called
successfully.

Value The value to be increment.

 The content of the value block will be returned after the decrement is done.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Decrease the value of a MIFARE® Value Block and also copy the value block to the backup block.

1.4.6 int MF_StoreKeyToEE(int DeviceAddress, unsigned char KeyAB, unsigned char Sector, unsigned char *Key)

Parameter Description

DeviceAddress Device Address of the reader

KeyAB Select KEYA or KEYB.

 0x60: the Key will be stored as KEYA.

 0x61: the Key will be stored as KEYB.

Sector The sector number {0x00-0x0F}: where the key to be stored..

Key Pointer to a 6-bytes buffer storing the uncoded key.string. (i.e. A0A1A2A3A4A5)

Return 0x00 – Successful

(Refer the API return code for other values)

RFID-M1 – API Programmer Guide

18

Description

Stores a key to the reader’s EEPROM.

1.4.7 int MF_HLRequest (int DeviceAddress, unsigned char mode, int &length, unsigned char *UID)

Parameter Description

DeviceAddress Device Address of the reader

Mode Operating Mode

Bit0 – All – Select Request all or Request IDLE mode (0/1= IDLE/ALL)

Bit1 – SNR – Enable the Card Serial Number comparison features. The further operating will be
processed only if the detected card number matches the card serial number sent by the Host.

Length number(4 -10 byte) of UID.

UID Pointer to a 4-byte (or 7-byte, 10-byte) buffer storing the UID (card serial number) of the card to
be selected.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

The MF_HLRequest command integrated the low level commands – Request, Anti-Collision – Select(AntiColl2-
Seledt2, AntiColl3-Select) to a single one-step operation.

RFID-M1 – API Programmer Guide

19

1.5 Misc. Commands

1.5.1 int SetFirmwareBaudrate(int DeviceAddress, unsigned char Baudrate)

Parameter Description

DeviceAddress Device Address of the reader

Baudrate The baudrate of the Reader Module

0x01 - 9600bps

0x02 - 19200bps

0x03 - 38400bps

0x04 - 57600bps

0x05 - 115200bps

 Return 0x00 – Successful

(Refer the API return code for other values)

Description

Change the communication baud rate of the reader.

Note: the SetRDRBaudrate() modify the default baud rate stored in the reader’s internal EEPROM. The new setting
will not take effect until the next reset of the reader.

Note: Need to change the baud rate of the Host controller correspondly.

1.5.2 int SetDeviceAddress (int DeviceAddress, unsigned char &newAddress

unsigned char mode, char *SerialNum)

Parameter Description

DeviceAddress Device Address of the reader

newAddress The new device address to be programmed to the reader

mode 0x00 - Disable Checking of the Serial Number

0x01 - Enable Checking of the Serial Number

SerialNum Pointer to the string storing the Serial Number

Return 0x00 – Successful

(Refer the API return code for other values)

Description

The SetDeviceAddress() function programs a device address to the reader. If the Enable Serial Number Checking
Flag is set, the correct Reader Serial Number must be submitted to program the device address.

Example

To program a new device address (0x04) to a reader whose current address is 0x01 and the serial number is
"12345678"

DeviceAddress=0x01;

unsigned char newAddress=0x04;

unsigned char mode=0x01;

if(SetDeviceAddress(DeviceAddress,newAddress,mode,"12345678"))

RFID-M1 – API Programmer Guide

20

{ //successful }

else

{ //Not successful }

1.5.3 int GetVersionlNum (int DeviceAddress, char *VersionNUM)

Parameter Description

DeviceAddress Device Address of the reader

VersionNum Pointer to the string of the Version Number. The version number is the firmware version of the
reader device.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Get the Reader’s Firmware version number.

1.5.4 int GetSerialNum (int DeviceAddress, int &CurrentAddress, char *SerialNUM)

Parameter Description

DeviceAddress Device Address of the reader

CurrentAddress Device address returned

SerialNum Pointer to the string storing the Serial Number returned.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Get the Device Address and the Serial Number from the reader.

Example

To program a new device address (0x04) to a reader whose current address is 0x01 and the serial number is
"12345678"

DeviceAddress=0x00;

int CurrentAddress;

char SerialNum[8];

if(!GetSerialNum(DeviceAddress,CurrentAddress,SerialNum))

{ //successful

CurrentAddress = 1,

SerialNum =”12345678”

}

else

{ //Not successful }

1.5.5 int GetUserInfo (int DeviceAddress, char *UserInfo)

Parameter Description

DeviceAddress Device Address of the reader

RFID-M1 – API Programmer Guide

21

UserInfo Pointer to the 32-bytes user information.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Get the 32-bytes programmable user information.

1.5.6 int SetUserInfo (int DeviceAddress, char *UserInfo)

Parameter Description

DeviceAddress Device Address of the reader

UserInfo Pointer to the 32-bytes user information to be programmed.

Return 0x00 – Successful

(Refer the API return code for other values)

Description

Program the 32-bytes user information to the reader.

1.5.7 int SetWiegandStatus(int DeviceAddress,unsigned char status)

Parameter Description

DeviceAddress Device Address of the reader

Status bit0 1 ----- Buzzer and LED controlled by external I/O

 0 ----- Buzzer and LED not controlled by external I/O

 bit1 1 ----- Prompt from Buzzer and LED after successful read

 0 ------ No prompt from Buzzer and LED after successful read

 bit4

1 ------ Enable Wiegand mode

0 ------- Disable Wiegand mode

Return 0x00 – Successful

(Refer the API return code for other values)

Description

 Set Wiegand Status of the reader, setting will be saved after power out.

1.5.8 int ActiveWiegandMode(int DeviceAddress,unsigned char status)

Parameter Description

DeviceAddress Device Address of the reader

Status bit0 1 ----- Buzzer and LED controlled by external I/O

RFID-M1 – API Programmer Guide

22

 0 ----- Buzzer and LED not controlled by external I/O

 bit1 1 ----- Prompt from Buzzer and LED after successful read

 0 ------ No prompt from Buzzer and LED after successful read

 bit4 1 ------ Enable Wiegand mode

0 ------- Disable Wiegand mode

Return 0x00 – Successful

(Refer the API return code for other values)

Description

 Set Wiegand Status of the reader, setting will not be saved after power out.

1.5.9 int ReadChar(unsigned char *byte)

Parameter Description

Data Field N/A

Return 0x00 – Successful

(Refer the API return code for other values)

byte[0] The length of the data returned from the rs232

byte[1~n] Data returned from the rs232.

 Description

 Get data string returned from the reader.

1.6 Huahong SHC1102 command set

1.6.1 int SHC1102_Auth(int DeviceAddress,unsigned char *key);

Parameter Description

DeviceAddress Device Address of the reader

Key 4 Byte key authentication

Return 0x00 – Successful

(Refer the API return code for other values)

 Description

 Huahong SHC1102 card key authentication

1.6.2 int SHC1102_Read(int DeviceAddress,unsigned char block, unsigned char *dat)

Parameter Description

DeviceAddress Device Address of the reader

Block Block address (0~15)

Data 4 Byte returned data

Return 0x00 – Successful

RFID-M1 – API Programmer Guide

23

(Refer the API return code for other values)

 Description

Read data from Huahong SHC1102 card

1.6.3 int SHC1102_Write(int DeviceAddress,unsigned char block, unsigned char *dat)

Parameter Description

DeviceAddress Device Address of the reader

Block Block address (0~15)

Data 4 Byte date writing

Return 0x00 – Successful

(Refer the API return code for other values)

 Description

Write data to Huahong SHC1102 card

1.6.4 int SHC1102_Halt(int DeviceAddress)

Parameter Description

DeviceAddress Device Address of the reader

Return 0x00 – Successful

(Refer the API return code for other values)

 Description

 Halt command of Huahong SHC1102 card

RFID-M1 – API Programmer Guide

24

2 Additional Information

2.1 Error/Status Code

System Error/Status Codes (0x00-0x0F)

OK 0x00 Command OK. (success)
PARA_ERR 0x01 Parameter value out of range error
TMO_ERR 0x04 Reader reply time out error
SEQ_ERR 0x05 Communication Sequence Number out of order
CMD_ERR 0x06 Reader received unknown command
CHKSUM_ERR 0x07 Communication Check Sum Error
INTR_ERR 0x08 Unknown Internal Error

Card Error/Status Codes (0x10-0x1F)

NOTAG_ERR 0x11 No card detected
CRC_ERR 0x12 Wrong CRC received from card
PARITY_ERR 0x13 Wrong Parity Received from card
BITCNT_ERR 0x14 Wrong number of bits received from the card
BYTECNT_ERR 0x15 Wrong number of bytes received from the card
CRD_ERR 0x16 Any other error happened when communicate with card

MIFARE® Error/Status Codes (0x20-0x2F)

MF_AUTHERR 0x20 No Authentication Possible
MF_SERNRERR 0x21 Wrong Serial Number read during Anti-collision.
MF_NOAUTHERR 0x22 Card is not authenticated
MF_VALFMT 0x23 Not value block format
MF_VAL 0x24 Any problem with the VALUE related function

Type-B Card Error/Status Codes (0x30-0x3F)

<To be defined>

SAM Error/Status Codes (0x40-0x4F)

<To be defined>

	1 API Functions
	1.1 Configuration, I/O commands
	1.1.1 Int GetVersion API(char *VersionAPI)
	1.1.2 int ActiveLED (int DeviceAddress, unsigned char NumLED, unsigned char ontime, ussigned char cycle)
	1.1.3 int SetLED (int DeviceAddress, unsigned char LEDState)
	1.1.4 int ActiveBuzzer (int DeviceAddress, unsigned char mode, unsigned char *pattern)
	1.1.5 int RF_Field (int DeviceAddress, unsigned char time)

	1.2 ISO14443-A Command
	1.2.1 int MF_Request (int DeviceAddress, unsigned char mode, unsigned char *ATQ)
	1.2.2 int MF_Anticoll (int DeviceAddress, unsigned char *UID, unsigned char &Collision)
	int MF_Anticoll2 (int DeviceAddress, unsigned char *UID, unsigned char &Collision)
	int MF_Anticoll3 (int DeviceAddress, unsigned char *UID, unsigned char &Collision)
	1.2.3 int MF_Select(int Device Address, unsigned char *UID)
	int MF_Select2(int Device Address, unsigned char *UID)
	int MF_Select3(int Device Address, unsigned char *UID)
	1.2.4 int MF_Halt(int Device Address, unsigned char mode)
	1.2.5 int SLE_Generic(int DeviceAddress,unsigned char CRC_Flag,unsigned char &length,unsigned char *buffer)

	1.3 Mifare® function
	1.3.1 int MF_Auth(int DeviceAddress, unsigned char KeyAB, unsigned char *snr, unsigned char add_blk)
	1.3.2 int MF_Read (int DeviceAddress,unsigned char add_blk, unsigned char num_blk, unsigned char *buffer);
	1.3.3 int MF_Write(int DeviceAddress,unsigned char add_blk, unsigned char num_blk, unsigned char *buffer)
	1.3.4 int MF_Transfer(int DeviceAddress, unsigned char add_blk)
	1.3.5 int MF_Incremnet(int DeviceAddress, unsigned char add_blk, int value)
	1.3.6 int MF_Decrement(int DeviceAddress, unsigned char add_blk, int value)
	1.3.7 int MF_Restore(int DeviceAddress, unsigned char add_blk)
	1.3.8 int MF_InitValue(int DeviceAddress, unsigned char add_blk, int value)
	1.3.9 int MF_ReadValue(int DeviceAddress, unsigned char add_blk, int *value)
	1.3.10 int MF_LoadKey(int DeviceAddress, unsigned char *Key)
	1.3.11 int MF_StoreKeyToEE(int DeviceAddress, unsigned char KeyAB, unsigned char Sector, unsigned char *Key)
	1.3.12 int MF_LoadKeyFromEF(int DeviceAddress, unsigned char KeyAB, unsigned char Sector)

	1.4 Mifare® High Level Functions
	1.4.1 int MF_HLRead (int DeviceAddress, unsigned char mode, unsigned char add_blk, unsigned char num_blk, unsigned char *snr, unsigned char *buffer);
	1.4.2 int MF_HLWrite (int DeviceAddress, unsigned char mode, unsigned char add_blk, unsigned char num_blk, unsigned char *snr, unsigned char *buffer);
	1.4.3 int MF_HLInitVal (int DeviceAddress, unsigned char mode, unsigned char sect_num, unsigned char *snr, int value);
	1.4.4 int MF_HLInc (int DeviceAddress, unsigned char mode, unsigned char sect_num, unsigned char *snr, int *value)
	1.4.5 int MF_HLDec (int DeviceAddress, unsigned char mode, unsigned char sect_num, unsigned char *snr, int *value)
	1.4.6 int MF_StoreKeyToEE(int DeviceAddress, unsigned char KeyAB, unsigned char Sector, unsigned char *Key)
	1.4.7 int MF_HLRequest (int DeviceAddress, unsigned char mode, int &length, unsigned char *UID)

	1.5 Misc. Commands
	1.5.1 int SetFirmwareBaudrate(int DeviceAddress, unsigned char Baudrate)
	1.5.2 int SetDeviceAddress (int DeviceAddress, unsigned char &newAddress
	1.5.3 int GetVersionlNum (int DeviceAddress, char *VersionNUM)
	1.5.4 int GetSerialNum (int DeviceAddress, int &CurrentAddress, char *SerialNUM)
	1.5.5 int GetUserInfo (int DeviceAddress, char *UserInfo)
	1.5.6 int SetUserInfo (int DeviceAddress, char *UserInfo)
	1.5.7 int SetWiegandStatus(int DeviceAddress,unsigned char status)
	1.5.8 int ActiveWiegandMode(int DeviceAddress,unsigned char status)
	1.5.9 int ReadChar(unsigned char *byte)

	1.6 Huahong SHC1102 command set
	1.6.1 int SHC1102_Auth(int DeviceAddress,unsigned char *key);
	1.6.2 int SHC1102_Read(int DeviceAddress,unsigned char block, unsigned char *dat)
	1.6.3 int SHC1102_Write(int DeviceAddress,unsigned char block, unsigned char *dat)
	1.6.4 int SHC1102_Halt(int DeviceAddress)

	2 Additional Information
	2.1 Error/Status Code

